This tutorial explains the various aspects of the Docker Container service. Starting with the basics of Docker which focuses on the installation and configuration of Docker, it gradually moves on to advanced topics such as Networking and Registries. The last few chapters of this tutorial cover the development aspects of Docker and how you can get up and running on the development environments using Docker Containers.

Docker is a container management service. The whole idea of Docker is for developers to easily develop applications, ship them into containers which can then be deployed anywhere.

What are containers?

The industry standard today is to use Virtual Machines (VMs) to run software applications. VMs run applications inside a guest Operating System, which runs on virtual hardware powered by the server’s host OS.

VMs are great at providing full process isolation for applications: there are very few ways a problem in the host operating system can affect the software running in the guest operating system, and vice-versa. But this isolation comes at great cost — the computational overhead spent virtualizing hardware for a guest OS to use is substantial.

Containers take a different approach: by leveraging the low-level mechanics of the host operating system, containers provide most of the isolation of virtual machines at a fraction of the computing power.

Why use containers?

Containers offer a logical packaging mechanism in which applications can be abstracted from the environment in which they actually run. This decoupling allows container-based applications to be deployed easily and consistently, regardless of whether the target environment is a private data center, the public cloud, or even a developer’s personal laptop. This gives developers the ability to create predictable environments that are isolated from rest of the applications and can be run anywhere.

From an operations standpoint, apart from portability containers also give more granular control over resources giving your infrastructure improved efficiency which can result in better utilization of your compute resources.

Course Materials

Leave a comment

Your email address will not be published. Required fields are marked *